Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine.
نویسندگان
چکیده
OBJECTIVES To assess the time course changes in N-acetylaspartate (NAA) and creatine (Cr) levels in the brain of athletes who suffered a sport-related concussion. PARTICIPANTS Eleven nonconsecutive athletes with concussive head injury and 11 sex- and age-matched control volunteers MAIN OUTCOME MEASURES : At 3, 15, 30, and 45 days postinjury, athletes were examined by proton magnetic resonance spectroscopy for the determination of NAA, Cr, and choline (Cho) levels. Proton magnetic resonance spectroscopic data recorded for the control group were used for comparison. RESULTS Compared with controls (2.18 ± 0.19), athletes showed an increase in the NAA/Cr ratio at 3 (2.71 ± 0.16; P < .01) and 15 (2.54 ± 0.21; P < .01) days postconcussion, followed by a decrease and subsequent normalization at 30 (1.95 ± 0.16, P < .05) and 45 (2.17 ± 0.20; P < .05) days postconcussion. The NAA/Cho ratio decreased at 3, 15, and 30 days postinjury (P < .01 compared with controls), with no differences observed in controls at 45 days postconcussion. Compared with controls, significant increase in the Cho/Cr ratio after 3 (+33%, P < .01) and 15 (+31.5%, P < .01) days postinjury was observed whereas no differences were recorded at 30 and 45 days postinjury. CONCLUSIONS This cohort of athletes indicates that concussion may cause concomitant decrease in cerebral NAA and Cr levels. This provokes longer time for normalization of metabolism, as well as longer time for resolution of concussion-associated clinical symptoms.
منابع مشابه
A prospective study of physician-observed concussion during a varsity university ice hockey season. Part 1 of 4.
OBJECT Despite negative neuroimaging findings using traditional neuroimaging methods such as MRI and CT, sports-related concussions have been shown to cause neurometabolic changes in both the acute and subacute phases of head injury. However, no prospective clinical study has used an independent physician-observer design in the monitoring of these changes. The objective of this study was to eva...
متن کاملAssessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients.
Concussive head injury opens a temporary window of brain vulnerability due to the impairment of cellular energetic metabolism. As experimentally demonstrated, a second mild injury occurring during this period can lead to severe brain damage, a condition clinically described as the second impact syndrome. To corroborate the validity of proton magnetic resonance spectroscopy in monitoring cerebra...
متن کاملThe molecular mechanisms affecting N-acetylaspartate homeostasis following experimental graded traumatic brain injury.
To characterize the molecular mechanisms of N-acetylaspartate (NAA) metabolism following traumatic brain injury (TBI), we measured the NAA, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentrations and calculated the ATP/ADP ratio at different times from impact, concomitantly evaluating the gene and protein expressions controlling NAA homeostasis (the NAA synthesizing and degr...
متن کاملTemporal lobe epilepsy: bilateral hippocampal metabolite changes revealed at proton MR spectroscopic imaging.
PURPOSE To determine which proton magnetic resonance (MR) spectroscopic imaging measures are best for lateralizing the seizure focus in patients who have temporal lobe epilepsy with and in those without hippocampal atrophy on MR images, the extent of contralateral abnormalities, and whether there is a correlation between MR spectroscopic imaging findings and surgical outcome. MATERIALS AND ME...
متن کاملProton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy.
Alterations in motor function in cervical myelopathy secondary to degenerative disease may be due to local effects of spinal compression or distal effects related to cortical reorganization. This prospective study characterizes differences in metabolite levels in the motor cortex, specifically N-acetylaspartate, creatine, choline, myo-inositol and glutamate plus glutamine, due to alterations in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of head trauma rehabilitation
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2013